23 research outputs found

    Lower bounds for Smith's rule in stochastic machine scheduling

    Get PDF
    We consider the problem to minimize the weighted sum of completion times in nonpreemptive parallel machine scheduling. In a landmark paper from 1986, Kawaguchi and Kyan [5] showed that scheduling the jobs according to the WSPT rule -also known as Smith's rule- has a performance guarantee of 12(1+2)1.207{1\over 2}(1+\sqrt{2}) \approx 1.207. They also gave an instance to show that this bound is tight. We consider the stochastic variant of this problem in which the processing times are exponentially distributed random variables. We show,somehow counterintuitively, that the performance guarantee of the WSEPT rule, the stochastic analogue of WSPT, is not better than 1.229. This constitutes the first lower bound for WSEPT in this setting, and in particular, it shows that even with exponentially distributed processing times, stochastic scheduling has somewhat nastier worst-case examples than deterministic scheduling. In that respect, our analysis sheds new light on the fundamental differences between deterministic and stochastic scheduling

    Efficiency and fairness in ambulance planning

    Get PDF
    Mei, R.D. van der [Promotor]Bhulai, S. [Promotor

    Introducing fairness in Norwegian air ambulance base location planning

    Get PDF
    Background A primary task of the Norwegian helicopter emergency medical services (HEMS) is to provide advanced medical care to the critical ill and injured outside of hospitals. Where HEMS bases are located, directly influences who in the population can be reached within a given response time threshold and who cannot. When studying the locations of bases, the focus is often on efficiency, that is, maximizing the total number of people that can be reached within a given set time. This approach is known to benefit people living in densely populated areas, such as cities, over people living in remote areas. The most efficient solution is thus typically not necessarily a fair one. This study aims to incorporate fairness in finding optimal air ambulance base locations. Methods We solve multiple advanced mathematical optimization models to determine optimal helicopter base locations, with different optimization criteria related to the level of aversion to inequality, including the utilitarian, Bernoulli-Nash and iso-elastic social welfare functions. This is the first study to use the latter social welfare function for HEMS. Results Focusing on efficiency, a utilitarian objective function focuses on covering the larger cities in Norway, leaving parts of Norway largely uncovered. Including fairness by rather using an iso-elastic social welfare function in the optimization avoids leaving whole areas uncovered and in particular increases service levels in the north of Norway. Conclusions Including fairness in determining optimal HEMS base locations has great impact on population coverage, in particular when the number of base locations is not enough to give full coverage of the country. As results differ depending on the mathematical objective, the work shows the importance of not only looking for optimal solutions, but also raising the essential question of ‘optimal with respect to what’.publishedVersio

    Mensenlevens Redden met Operations Research: Dynamisch Ambulance Management

    Get PDF
    In noodsituaties waarin elke seconde telt, is het tijdig ter plaatse zijn van een ambulance van levensbelang. Een veelbelovende manier om de aanrijtijden van ambulances te verkleinen is Dynamisch Ambulance Management, waarbij ambulances geen vaste standplaats hebben, maar slim en dynamisch over de regio kunnen worden vespreid afhankelijk van de voertuig- en incidentlocaties. In het kader van het project “Van Reactieve naar Proactieve Planning van Ambulancediensten”, kortweg REPRO, hebben CWI en TU Delft nieuwe methoden ontwikkeld voor een optimale dynamische spreiding van ambulances over een verzorgingsgebied. De resultaten zijn veelbelovend en worden momenteel uitgetest in een pilot in samenwerking met GGD Flevoland

    Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms

    Get PDF
    This paper reports on the results of the VeRoLog Solver Challenge 2016–2017: the third solver challenge facilitated by VeRoLog, the EURO Working Group on Vehicle Routing and Logistics Optimization. The authors are the winners of second and third places, combined with members of the challenge organizing committee. The problem central to the challenge was a rich VRP: expensive and, therefore, scarce equipment was to be redistributed over customer locations within time windows. The difficulty was in creating combinations of pickups and deliveries that reduce the amount of equipment needed to execute the schedule, as well as the lengths of the routes and the number of vehicles used. This paper gives a description of the solution methods of the above-mentioned participants. The second place method involves sequences of 22 low level heuristics: each of these heuristics is associated with a transition probability to move to another low level heuristic. A randomly drawn sequence of these heuristics is applied to an initial solution, after which the probabilities are updated depending on whether or not this sequence improved the objective value, hence increasing the chance of selecting the sequences that generate improved solutions. The third place method decomposes the problem into two independent parts: first, it schedules the delivery days for all requests using a genetic algorithm. Each schedule in the genetic algorithm is evaluated by estimating its cost using a deterministic routing algorithm that constructs feasible routes for each day. After spending 80 percent of time in this phase, the last 20 percent of the computation time is spent on Variable Neighborhood Descent to further improve the routes found by the deterministic routing algorithm. This article finishes with an in-depth comparison of the results of the two approaches

    Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation

    Get PDF
    Providers of Emergency Medical Services (EMS) are typically concerned with keeping response times short. A powerful means to ensure this, is to dynamically redistribute the ambulances over the region, depending on the current state of the system. In this paper, we provide new insight into how to optimally (re)distribute ambulances. We study the impact of (1) the frequency of redeployment decision moments, (2) the inclusion of busy ambulances in the state description of the system, and (3) the performance criterion on the quality of the distribution strategy. In addition, we consider the influence of the EMS crew workload, such as (4) chain relocations and (5) time bounds, on the execution of an ambulance relocation. To this end, we use trace-driven simulations based on a real dataset from ambulance providers in the Netherlands. In doing so, we differentiate between rural and urban regions, which typically face different challenges when it comes to EMS. Our results show that: (1) taking the classical 0-1 performance criterion for assessing the fraction of late arrivals only differs slightly from related response time criteria for evaluating the performance as a function of the response time, (2) adding more relocation decision moments is highly beneficial, particularly for rural areas, (3) considering ambulances involved in dropping off patients available for newly coming incidents reduces relocation times only slightly, and (4) simulation experiments for assessing move-up policies are highly preferable to simple mathematical models

    Benchmarking online dispatch algorithms for Emergency Medical Services

    Get PDF
    Providers of Emergency Medical Services (EMS) face the online ambulance dispatch problem, in which they decide which ambulance to send to an incoming incident. Their objective is to minimize the fraction of arrivals later than a target time. Today, the gap between existing solutions and the optimum is unknown, and we provide a bound for this gap.Motivated by this, we propose a benchmark model (referred to as the offline model) to calculate the optimal dispatch decisions assuming that all incidents are known in advance. For this model, we introduce and implement three different methods to compute the optimal offline dispatch policy for problems with a finite number of incidents. The performance of the offline optimal solution serves as a bound for the performance of an - unknown - optimal online dispatching policy.We show that the competitive ratio (i.e., the worst case performance ratio between the optimal online and the optimal offline solution) of the dispatch problem is infinitely large; that is, even an optimal online dispatch algorithm can perform arbitrarily bad compared to the offline solution. Then, we performed benchmark experiments for a large ambulance provider in the Netherlands. The results show that for this realistic EMS system, when dispatching the closest idle vehicle to every incident, one obtains a fraction of late arrivals that is approximately 2.7 times that of the optimal offline policy. We also analyze another online dispatch heuristic, that manages to reduce this gap to approximately 1.9. This constitutes the first quantification of the gap between online and offline dispatch policies

    Klinik UPSR 2016

    Get PDF
    Calon Ujian Pencapaian Sekolah Rendah (UPSR) akan mendapat tip menjawab soalan secara berkesan menerusi Klinik UPSR BH Didik (Fasa 2).Program ini berberituk seminar dengan ceramah selama tiga jam setengah setiap subjek
    corecore